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ABSTRACT

The tensile properties of the extensor digitorum
longus muscle tendon unit (EDL MTU) were studied in 16
white male New Zealand rabbits in both the freshly
euthanized state (less than 30 minutes after death) and
the frozen-thawed state (frozen at -80° for 28 days and
then warmed to 38°C). Stretch to failure was
specifically analyzed.

Frozen thawed EDL MTUs had significantly lower
ultimate force to failure (p<.01l), lower energy to
failure (p<.01), lower strain at failure (p<.0001), and
failed at a different anatomic location {(fascia~ muscle
interface compared with the musculotendinous 7junction)
compared with the EDL MTUs from freshly euthanized
animals.

The results of this study have implications for the
testing of freeze-stored muscles.
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EFFECTS OF POSTMORTEM FREEZING ON PASSIVE
PROPERTIES OF RABBIT EXTENSOR DIGITORUM LONGUS
MUSCLE TENDON COMPLEX

Paul H. Leitschuh
Tammy J. Doherty
Dean C. Taylor
Daniel E. Brooks
John B. Ryan

Sometimes human and animal tissues must be stored
until testing of biomechanical properties is feasible.
This necessity has led to mauny studies investigating
the changes which occur in tissue properties postmortem
and after freeze-storage {1-10). Freezing is a common
method of storing biological tissues (11,12). Woo et
al. (13) have provided important data concerning the
freeze storage of ligaments. They examined the
structural properties of the rabbit medial collateral
ligament (MCL)-bone complex and the mechanical
properties of the MCL substance in freshly euthanized
animals and in others that had been frozen from 1/2
months to 3 months at -20° C. After testing the femur-
MCL-tibia specimens, they noted no statistically
significant differences between fresh and stored
samples in terms of load, deformation, and energy-
absorbing capability at failure. Furthermore, they
found that the stress-strain curves, tensile strength,
and ultimate strain of the MCL substance did not change
during freeze storage. They concluded that proper and
careful storage by freezing has little effect on the
biomechanical properties of ligaments.

To our knowledge, the biomechanical properties of
musculotendinous units (MTUs) from freshly euthanized
animals have not been compared with those of MTUs
which have been stored in a frozen state. This study
was devised to compare the strength properties of fresh
and frozen MTUs and to determine if there is a
difference.

Materials and Methods
Sixteen mature white male New Zealand rabbits with

an average weight of 4.31 kg were used in this study.
They were anesthetized with an intravenous mixture of
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lcc of xylazine (20mg/cc) (Gemini, Rugby Laboratories,
Rockville Laboratories, Rockville Centre, NY), lcc of
Ketamine (100mg/cc) (Vetalar, Parke-Davis Laboratories,
Morris Plains, NJ) and 0.5cc of Acepromazine (10mg/cc)
(PromAce, Ayerst Laboratories, New York, NY) titrated
to physiologic anesthesia. Both hindlimbs were shaved
and the right or the ieft hindlimb was randomly
selected for the first operative procedure.

Under sterile conditions, using aseptic technique,
the Tibialis Anterior muscle (TA) and the Extensor
Digitorum Longus muscle (EDL) of the designated limb
were exposed from their origins to their insertions
into the foot. With the knee at 90° of flexion and tie
ankle (hock) at maximum dorsiflexion, a marking suture
was placed around the EDL just proximal to the cruciate
ligament {(retinaculum) at the dorsum of the foot. The
tendon of the TA was severed at its insertion at the
base 6f the second metatarsal and the muscle was
dissected to uncover the EDL. The multiple slips of
the EDL tendon weve severed distal to the metatarsal
phalangeal joints. The EDL MTU was then dissected free
to the level of its tendon of origir. at the lateral
femoral condyle of the distal femur. The EDL MTU was
kept moist during this procedure by irrigation with
normal saline.

The animal was then euthanized with 4cc of
Pentobarbital (50mg/cc) (Nembutal, Abbott Laboratories,
North Chicago, IL) and a 4.0 mm smooth Steinmann pin
was passed through the distal femur at the level of the
femoral condyles with a power drill. The animal was
then transferred to the testing lab and the femur of
the operated leqg was fixed in a stereotaxis frame by
securing the Steinmann pin with clamps. The distal
tendons of the EDL were fixed in the grasping clamp of
a United Testing Machine (United Calibration
Corporation, Huntington Beach, CA) with the previously
placed marking suture positioned at the lower end of
the clamp. The EDL was vertically oriented with the
Steinmann pin below and the grasping clamp above, and
was pulled at an angle of approximately 135° to the
long axis femur. (See Fig.l) The weight of the rabbit
stabilized the femur.
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Mechanical testing was initiated within 30 minutes
from the time of death. The EDL MTU was continuously
irrigated with a normal saline drip maintained at 38°C.
Once the specimen was mounted, an initial mechanical
rest length of the EDL MTU was determined. The
crosshead of the mechanical testing machine was
adjusted until the EDL MTU was visibly slack. The
distance from the grasping clamp to the origin of the
relaxed EDL on the femur was measured and recorded as
the slack length. The EDL MTU was stretched 5 mm at
1000 mm/min and then returned to the slack length. All
times, displacements, and forces were recorded on an
IBM-compatible PC at.0l sec intervals. The distance
required to generate a minimum positive force (15
grams) was read off the display monitor. This length
was added to the slack length and recorded as the
mechanical rest length (L,). The crosshead of the
mechanical testing apparatus was adjusted such that the
distance from the origin of EDL to the grasping clamp
equaled L,.

After determining L,, a series of "relaxation
tests" were conducted. The EDL MTU was stretched from
L, to 104% of L, at a velocity of 1000 mm/min, the EDL
MTU was maintained at this stretch length for 7 minutes
or until force reached steady-state. Data were
collected at 10 samples/sec during this relaxation
period. At the end of the relaxation period, the
specimen was returned to L, and allowed to rest for 2
minutes. This procedure was repeated for stretch
lengths of 6%, 8%, and 10% of L,. The EDL was then
preconditioned by cycling it 10 times at 1000 mm/min
between 110% of L, and L,. Immediately following the
cyclic preconditioning, the EDL MTU was stretched to
failure at a rate of 1000 mm/min. The force, time, and
displacement at failure and the anatomic location of
the failure were recorded. A typical force displacement
curve is shown in Fig.2.

After mechanical testing, the rabbits were
immediately eviscerated. The contralateral untested
hindlimbs were splinted with the knee in extension (0°
flexion) and the ankle at 90° of plantar flexion. The
rabbit was then frozen at -80°C for 28 days in a
sealed, air tight plastic bag.
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After 28 days each rabbit, in its plastic bag, was
thawed overnight in a 4°C refrigerator and then warmed
prior to testing in a 38°C water bath for a minimum of
one hour. Mechanical testing of the frozen thawed EDL
MTU'’s was performed as described above for the fresh
specimens.

Preliminary analysis of our data showed a shift in
the apparent mechanical resting length (L,) for a given
specimen between tests. This shift indicated either
that our mounting apparatus (stereotaxis) had shifted
during testing or that we had not allowed enough time
for the viscoelastic MTU to return to its original
mechanical resting state. To investigate this problem,
we conducted a series of tests substituting an
electrical wire (22-gauge, insulated, and copper
stranded) for a biological specimen. This wire behaved
in a purely elastic fashion when mounted between a
fixed lower clamp and the grasping clamp attached to
the crosshead of the United Testing Machine. When
mounted between the Steinmann pin (clamped in the
stereotaxis apparatusj) and the crosshead clamp, the
wire behaved in a viscoelastic manner, generating
characteristic stress-relaxation curves. Shifts in the
apparent mechanical resting length between tests were
also evident. From these observations, we concluded
that the shifts observed in L,, the apparent mechanical
rest length, between tests for an individual specimen
were the result of laxity in the Steinmann pin-
stereotaxis mounting apparatus.

To correct for these shifts in the apparent
mechanical resting length, we assumed that the
calculated value of L, was correct for the 4%
relaxation test. Then we determined the displacement
corresponding to 100 grams of force for each test. The
correction in L, between two tests (chnducted at the
same strain rate) was calculated from the difference
between the displacement values corresponding to 100
grams of force. Corrected L, values were incorporated
into our calculations for energy to failure and strain
at failure.

Statistics: The energy to failure, ultimate force
at failure, and strain at failure for fresh and freeze
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thawed specimens were statistically compared with a
paired Students’ t-test. The anatomical patterns at
failure for fresh and freeze-thawed specimens were
analyzed with Fisher’s exact test.

Results

When testing the fresh specimens to failure, two
EDL tendons slipped in the grasping clamp, one tore in
the clamp, and two failed at the base of the clamp.
Data from these specimens were not used in comparison
of ultimate force at failure, strain at failure, energy
absorbed at failure, and anatomical failure it break.
In dissecting one frozen thawed specimen, a single slip
of the EDL tendon was inadvertently severed, rendering
that specimen untestable. In another frozen-thawed
specimen, deep circular linear lytic changes were noted
in the muscle belly of the EDL after thawing, rendering
that specimen also untestable. One frozen-thawed
specimen was palpated and noted to be excessively cold
and was excluded from analysis because the distal
tendon of its fresh contralateral counterpart tore in
the grasping clamp with stretch to failure. Ultimate
force and displacement data were not recorded in
another fresh specimen. In eight additional specimens
(fresh and frozen) insufficient data was captured to
determine the energy absorbed to failure.

Data for five animals were available to compute
energy absorbed to failure. Postmortem storage by
freezing resulted in a significant reductieon in the
energy absorbed to failure (p<.0l) with (meantS.D.)
2.34340.471 Nm required for the fresh MTU's and
0.918340.078 Nm required for the frozen MTU’s.

Data from nine animals were available for analysis
of ultimate force at failure and strain at failnre.
Postmortem storage by freezing resulted in a
significant reduction (p<.01) in the ultimate force at
failure from 17,0474+2626 grams for the fresh MTU’'s to
9,6404+3428 grams for the frozen MTU’s. Postmortem
storage by freezing was associated with a significant
decrease in strain at failure (p<.0001) from
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24.26%+4.20 for the fresh MTU’s to 12.99%+2.24 for the
frozen MTU's.

Ten animals were available to compare the
anatomical location of failure at break. Eight of ten
(80%) of the fresh specimens failed horizontally at the
musculotendinous Jjunction. Two of ten (20%) fresh
specimens failed broadly at the interface between
fascia and muscle. Ten {100%) of the frozen/thawed
specimens failed broadly at the muscle fascia
interface. (See Fig. 3} The difference between
anatomical locations of failure is statistically
significant at p<.001.
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Discuss® uon

The study of muscle injuries has lead to the
investigation of the mechanical and structural
properties of musculotendinous units. A previous study
by Woo et al. indicated that the biomechanical
properties of freeze stored ligaments are similar to
those properties of ligaments from freshly euthanized
animals (13). Our study indicates that the passive
properties of frozen-thawed musculotendinous units are
different from those of freshly euthanized animals.

Crisco et al. studied the strength of rabbit
tibialis anterior and gastrocnemius muscles that had
been stored at -20°C and then thawed to 37°C in a water
bath. They found that the energy absorbed to failure
and the stress failure increased more than 100% for a
10,000-fold increase in strain rate (14). Because our
studies show that strength properties of the
musculotendinous unit are significantly altered by the
freeze storage process, we suggest caution in drawing
conclusions from this study and others which test the
mechanical properties of frozen-thawed muscle.

In our experiments, we placed a 4.0 mm Steinmann
pin through the distal rabbit femur at the level of the
femoral condyles. This pin was mounted in a modified
stereotaxis apparatus. A similar type of testing
apparatus has been used by other groups of
investigators studying the properties of
musculotendinous units (although some of these
investigators were measuring forces of lesser
magnitude) (15). Although convenient for mounting the
rabbit femur, we found that this apparatus was not
rigid and of itself added viscoelastic properties to
the element being tested. The additional elastic
components of the test system probably contributed to
lower measurements of force than those that would be
measured using a rigid mounting system at the same
strain rate. The effects of the additional viscous
elements are unknown.

All moveable or adjustable components of the
stereotaxis apparatus were fixed as securely as
possible. However, this was not sufficient to prevent
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the apparatus from changing configuration slightly
between tests, resulting in alterations in the apparent
mechanical resting length. We corrected for these
changes as described in the Materials and Methods
section.

One frozen-thawed specimen, which was excluded
from our analysis, was considerably colder to the touch
than other frozen-thawed specimens. It was difficult to
dissect, and was considerably stiffer with testing. For
these reasons we recommend monitoring the temperature
of the deep tissue throughout the thawing process.

Fresh specimens failed 80% of the time
horizontally at the musculotendinous junction. These
results are similar to those of Garret and
McMaster(16,17). Frozen-thawed specimens always failed
broadly at the muscle fascia interface. These results
suggest that the freeze-~-thaw process alters the
relative strengths of the muscle and tendon components
of the EDL MTU. Further testing will be required to
determine if the differences in the biomechanical
properties between freshly euthanized and freeze/thawed
MTUs is attributable to the muscular or tendinous
portion of the specimen.

We conclude that the strength properties of
musculotendinous units are altered by the ireeze-thaw
process. They become weaker (with a lower ultimate
force to failure and lower energy absorbed to failure)
and fail with a different anatomical pattern. We
recommend that mounting systems for measuring large
passive forces exerted on biological tissues be rigid
and be tested, a priori, to determine if the mounting
systems themselves exhibit elastic or viscoelastic
behavior. Finally, we recommend that future
experiments to determine the mechanical properties of
muscle tissue be conducted either in vivo or using
specimens from freshly euthanized animals.
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Fig.l The EDL MTU mounted in the testing apparatus.
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Fig.3 Tensile failure patterns for fresh and frozen-
thawed EDL MTUs.
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